Яндекс представил новую открытую библиотеку машинного обучения
Компания Яндекс разработала и выложила в открытый доступ новую библиотеку машинного обучения. Как обещают разработчики, CatBoost позволяет эффективно обучать модели на разнородных данных — таких как местонахождение пользователя, история операций и тип устройства.
CatBoost — это наследник метода машинного обучения Матрикcнет, который применяется почти во всех сервисах Яндекса. Как и Матрикснет, CatBoost задействует механизм градиентного бустинга: он хорошо подходит для работы с разнородными данными. Но если Матрикснет обучает модели на числовых данных, то CatBoost учитывает и нечисловые, например виды облаков или типы зданий.
Раньше такие данные приходилось переводить на язык цифр, что могло изменить их суть и повлиять на точность работы модели. Теперь их можно использовать в первоначальном виде. Благодаря этому CatBoost показывает более высокое качество обучения, чем аналогичные методы для работы с разнородными данными.
Для работы с CatBoost достаточно установить его на свой компьютер. Библиотека поддерживает операционные системы Linux, Windows и macOS и доступна на языках программирования Python и R. Яндекс разработал также программу визуализации CatBoost Viewer, которая позволяет следить за процессом обучения на графиках. Скачать CatBoost и CatBoost Viewer можно на GitHub.
Источник новости: Яндекс